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 This study compares three machine learning algorithms (Multilayer 

Perceptron Neural Network (MLP), Random Forest (RF), and 

Decision Tree (DT)) for modeling biodiesel production. For this 

purpose the synthesis methods (UIMS, MS, FPUI, PUI), the 

methanol to oil ratio (3:1 to 15:1) and reaction times (5–50 minutes), 

were considered as input parameters and the percentage of biodiesel 

production was considered as the output of the model. According to 

the results, the MLP model demonstrated superior predictive 

performance, with an R² score of 0.9800, RMSE of 3.28, and MAE 

of 2.35, significantly outperforming RF (R² = 0.8892) and DT (R² = 

0.8500). Also, the neural network model represents that all 

parameters (reaction time, methanol to oil ratio, and synthesis 

method) hold nearly equal importance. Based on the neural network 

model, the optimal synthesis conditions are: the UIMS method, a 

reaction time of 47 minutes, and a methanol-to-oil ratio of 5.8:1, 

yielding a predicted conversion of 98%. 

 

1. Introduction 

today, the production of biodiesel as an alternative fuel, due to environmental concerns and the 

energy supply crisis associated with fossil fuels, has been conducted by the various research 

efforts. Biodiesel was produced through a series of esterification reactions in which vegetable 

or animal oils (triglycerides) which is reacted with a short-chain alcohol (usually methanol) in 

the presence of a catalyst, converting into methyl esters (biodiesel) and glycerol. The yield of 

this process depends on numerous operational parameters, including the type of catalyst, 
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temperature, reaction time, molar ratio of alcohol to oil, and mixing intensity (Ma, Clements, 

& Hanna, 1999) (Randell et al., 2025; Yin, Ma, You, Wang, & Chang, 2012). 

Among these factors, the methanol-to-oil ratio is a key economic parameter; insufficient 

use of methanol leads to incomplete reaction yield, while excessive amounts are not only 

economically inefficient but may also cause process-related issues such as emulsion formation 

and difficulties in glycerol separation. Given the existence of complex nonlinear relationships 

between these parameters caused traditional methods like Response Surface Methodology 

(RSM) and Taguchi design often encounter difficulties in optimizing them. Recently, machine 

Learning (ML) algorithms have attention in chemical engineering modeling of processes due 

to their ability to handle complex, nonlinear relationships . Among various machine learning 

techniques, Neural Networks (NN) and ensemble methods such as Random Forest (RF) have 

shown particular promise in chemical engineering applications (Dobbelaere, Plehiers, Van de 

Vijver, Stevens, & Van Geem, 2021; Francisco Javier López-Flores, 2025; Gao, Zhu, Luo, 

Fraga, & Hsing, 2022). 

In the field of production process optimization, several studies have used methods such as 

RSM and artificial neural network (ANN). For example, Garg and Jain (Garg & Jain, 2020) in 

algae oil conversion, Selvaraj et al. (Selvaraj, Moorthy, Kumar, & Sivasubramanian, 2019) in 

waste cooking oil utilization, and Ayoola et al. (Ayoola et al., 2019) in waste peanut oil 

conversion to biodiesel have used these methods and emphasized their accuracy and superiority. 

In addition, genetic algorithm (GA) has also been used as an efficient optimization tool; as can 

be seen in the research of Betico et al. (2015) on shea butter oil and Srivastava et al. (Srivastava, 

Paul, & Goud, 2018) on microalgae oil. These studies report favorable results in parameter 

prediction and adjustment and suggest the need for further studies in this field and also used a 

combination of ANN and GA to model the biodiesel production process. 

Another area where AI has found wide application is the evaluation and prediction of 

biodiesel properties. For example, Sharma et al. (Sharma et al., 2023) used ANN to predict and 

optimize the combustion and emission characteristics of biodiesel. Moayedi et al. (Moayedi, 

Aghel, Foong, & Bui, 2020) evaluated the accuracy of various models such as Random Tree 

and Multilayer Neural Network (MLPR) in estimating the purity of biodiesel. Also, Chen et al. 

(Chen et al., 2023) used machine learning (ML) models for biodiesel characterization. Gautam 

et al. (Gautam, Kanakraj, & Henry, 2022) also investigated the application of linear regression, 

Multilayer Neural Network (MLP) and Nearest Neighbor (KNN) in optimizing the biodiesel 

production process. Also, various studies have focused on optimizing biodiesel production 

using ML algorithms which is concentrated on individual algorithms without a comprehensive 

comparison of their strengths and limitations (Arif et al., 2025; Omojola Awogbemi, 2023; 

Pawar et al., 2025; Xing, Zheng, Sun, & Agha Alikhani, 2021). However, comparative studies 

which are evaluating the performance of multiple algorithms are limited. 

Yin et al. (Yin et al., 2012) was reported the biodiesel production using four different 

methods: mechanical stirring (MS), flat plate ultrasonic irradiation (FPUI), flat plate ultrasonic 

irradiation with mechanical stirring (UIMS), and probe ultrasonic irradiation (PUI), and 

recorded various experimental data. The data in this paper is suitable for a systematic 

comparison of three machine learning algorithms, Decision Tree (DT), Random Forest (RF), 

and MLP. 

The aim of this study is a) It presents the first systematic comparison of three machine 

learning algorithms (DT, RF, MLP) for biodiesel yield prediction, filling a significant research 

gap; b) It develops a hybrid methodology that balances neural network accuracy (R² = 0.9800) 

with Random Forest interpretability, providing both high predictions and process insights; c) It 

delivers practical optimization guidelines and implementation strategies for industrial biodiesel 

production, offering tangible value to chemical engineers and plant managers. 
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2) Materials and Methods 

2.1) Collection of Experimental Data 

According to the Xiulian Yin et al. article (Yin et al., 2012), Table I shows the biodiesel 

production percentage at different times, at a temperature of 50°C, with various methanol-to-

oil ratios, and for a batch reaction process under four different synthesis conditions. For each 

method, seven methanol-to-oil (M/O) ratios were investigated: 3:1, 4:1, 5:1, 6:1, 7:1, 10:1, and 

15:1. The reaction time varied from 5 to 50 minutes at 10-minute intervals, while temperature 

conditions were kept constant. The biodiesel conversion percentage was measured as the output 

variable. The four synthesis conditions studied in this research are as follows: 

MS Method: Stirring was performed using a three-blade turbine electric stirrer with a 

diameter of 1.5 cm and an operating speed of 500 rpm. The reactants were placed in a 500 ml 

three-necked flask equipped with a reflux condenser, and the reaction temperature was 

controlled at 50°C using a water bath. 

FPUI Method: This method utilizes a flat-plate ultrasonic reactor (28 kHz, maximum power 

600 W) placed inside a water tank. The reactants were added to a 500 ml three-necked flask 

equipped with a reflux condenser. The flask was then placed on the flat-plate ultrasonic reactor, 

and the tank was filled with water before the experiment. The ultrasonic irradiation frequency 

and power were set to 28 kHz and 600 W, respectively. 

UIMS Method: The equipment for this experiment was almost identical to the FPUI setup, 

with the only difference being the addition of a stirrer, which was the same stirrer used in the 

MS method. When the experiment started, the flat-plate ultrasonic device and the mechanical 

stirrer operated simultaneously. 

PUI Method: This experiment employed a probe-type ultrasonic reactor with a probe 

approximately 22 mm in diameter and 100 mm in length. At the start of the experiment, the 

reactants were pumped into the reactor, and the ultrasonic horn was immersed into the reaction 

mixture. The ultrasonic irradiation frequency and power were set to 28 kHz and 600 W, 

respectively. 

 

Table I) The biodiesel production percentage according to the article by Xiulian Yin et 

al. (Yin et al., 2012) 

Biodiesel Conversion (%) 
Time 

(min) 
Method M/O = 

15 

M/O = 

10 

M/O = 

7 

M/O = 

6 

M/O = 

5 

M/O = 

4 

M/O = 

3 

31 35 40 42 37 17 10 5 

UIMS 

56 60 68 68 67 34 27 10 

65 73 79 84 78 49 42 15 

73 79 87 88 85 62 53 20 

76 81 91 93 90 71 61 25 

80 85 93 94 91 76 66 30 

84 88 94 95 92 82 70 35 

86 92 95 97 93 85 76 40 

88 93 96 98 95 87 77 45 

90 94 97 98 95 89 79 50 

28 30 28 26 20 12 7 5 

MS 
51 55 55 51 38 28 17 10 

69 73 74 70 55 40 25 15 

78 82 85 82 67 49 33 20 
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Biodiesel Conversion (%) 
Time 

(min) 
Method M/O = 

15 

M/O = 

10 

M/O = 

7 

M/O = 

6 

M/O = 

5 

M/O = 

4 

M/O = 

3 

83 85 89 86 75 58 38 25 

85 88 93 88 83 65 44 30 

87 89 94 91 88 73 49 35 

88 90 95 93 90 79 54 40 

89 91 97 95 91 82 57 45 

90 91 97 96 92 83 65 50 

25 26 21 18 14 10 4 5 

FPUI 

43 44 41 37 26 20 10 10 

58 59 54 52 39 27 20 15 

69 70 67 63 50 36 27 20 

78 81 75 75 60 44 34 25 

82 85 84 84 70 52 40 30 

86 88 87 86 77 60 44 35 

89 92 89 88 85 66 48 40 

91 93 94 91 88 73 52 45 

92 94 95 92 90 77 59 50 

34 37 43 42 35 24 12 5 

PUI 

59 64 70 70 66 40 30 10 

67 73 77 84 81 56 43 15 

74 79 88 89 85 70 55 20 

78 81 91 93 90 78 64 25 

83 87 93 94 91 84 72 30 

84 89 94 95 93 86 75 35 

86 92 95 96 95 89 79 40 

89 95 96 97 96 90 81 45 

90 95 97 98 97 91 82 50 

 

2.2) Data Preprocessing 

Based on the collected data (280 data points of biodiesel production percentage derived from 4 

synthesis method levels, 7 methanol-to-oil ratio levels, and 10 reaction time levels), the 

synthesis method was first encoded using one-hot encoding. Subsequently, the data was split 

into training (224 samples) and testing (56 samples) set in an 80:20 ratio. Finally, Z-score 

normalization was applied for training the neural network. 

2.3) Machine Learning Algorithms 

In this study three distinct machine learning algorithms: a Decision Tree (DT), a Random Forest 

(RF), and a Multilayer Perceptron (MLP) neural network was utilized with their implementation 

details. 

A Decision Tree (DT) model was developed by using MATLAB's fitrtree function. To 

ensure model generalizability, the tree depth was constrained to mitigate overfitting without 

compromising predictive performance. 

The Random Forest (RF) algorithm was implemented as an ensemble of 100 decision trees 

by using MATLAB's TreeBagger function. The used configuration included a minimum leaf 

size of 5, while the number of predictors to sample at each split was set to the square root of the 
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total feature count. For internal error estimation, the out-of-bag predictions were utilized, and 

for assessing feature significance, permutation importance was calculated. 

A feedforward Multilayer Perceptron (MLP) neural network was architected for regression. 

This consists of input layer of five neurons (matching the processed features), three hidden 

layers with 64, 32, and 16 neurons respectively, and a single-neuron output layer. The Rectified 

Linear Unit (ReLU) served as an activation function. The model was trained by using the 

Levenberg-Marquardt backpropagation algorithm, with L2 regularization (λ = 0.001) and a 

dropout rate of 20% applied to the hidden layers to prevent overfitting. 

2.4) Model Evaluation Metrics 

To evaluate the models, three statistical metrics were used: the Coefficient of Determination 

(R2) with formula (1), Root Mean Square Error (RMSE) with formula (2), and Mean Absolute 

Error (MAE) with formula (3). 

𝑅2 =
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2
𝑛

𝑖=1

 (2) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (3) 

3) Result and discussion 

3.1) Exploratory Data Analysis 

Fig. 1 presents an exploratory analysis of the production dataset (based on Table I). The figure 

shows that biodiesel conversion percentages cover a wide range, from 4% to 98%. Furthermore, 

the conversion percentage for each production method exhibits an increasing trend over 

time. Based on the box plot in Fig. 1, the UIMS method yields a higher biodiesel conversion 

percentage than the other methods. 

Analysis of the methanol-to-oil (M/O) ratio (Fig. 1) shows that as the ratio increases, the 

conversion percentage first rises and then declines. In contrast, longer synthesis times are 

consistently associated with increased biodiesel production. Furthermore, the different colored 

points, representing different experimental methods, indicate that each method may exhibit 

different behavior at various time points. 

An examination of the correlation matrix between different variables in Fig.1 clearly shows 

a positive correlation between time and conversion percentage, as well as between the M/O 

ratio and conversion percentage. However, the correlation between the production methods and 

other variables is low, suggesting that the experimental method has a lesser impact on the results 

compared to other parameters. The 3D plot presented in Fig.1 illustrates the relationship 

between time, M/O ratio, and conversion percentage. This plot demonstrates that as time and 

M/O ratio increase, the conversion percentage gradually increases. 

 

Fig. 1): Exploratory analysis of the production dataset (based on Table I) 
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3.2. Sensitivity Analysis 

Fig. 2 shows the parameter sensitivity plot for time, M/O ratio, and synthesis method. By 

averaging the biodiesel production yields and plotting them against synthesis time and different 

M/O ratios, we have: 

a) In all four methods, the average percentage of biodiesel production increases with time 

b) In all four methods, the average percentage of biodiesel production increases with 

increasing M/O ratio up to the range of 1:5 to 1:6 and then due to dilution of the reaction 

mixture, the percentage of biodiesel production decreases. However, the UIMS method 

produces more biodiesel than other methods at different M/O ratios and the FPUI method 

produces the least biodiesel 

c) According to the graph, the UIMS method has the highest biodiesel production followed 

by the PUI, MS and FPUI methods in order from highest to lowest biodiesel production. 

3.3. Model Performance Comparison 

Fig. 3 shows a comparison chart of actual values versus predicted values for each model. 

According to this figure, the MLP model has the highest R2 score and the DT model has the 

lowest R2 value. So, the MLP model has a superior ability to explain the variance of the data, 

and the DT model has great limitations in modeling complex relationships between input 

parameters. 

Regarding error metrics, the RF and MLP models exhibited the lowest RMSE and MAE 

values, confirming their higher predictive accuracy and lower systematic error. The high error 

values in the DT model can be due to the inability to generalize sufficiently between parameters. 

Also, by considering the scatter plot of actual values versus predicted values for the RF and 

MLP models in Fig. 3, which are compactly placed around the y=x line, it shows that there is a 

close match between the actual and predicted values, but for the DT model, the scatter of points 

is high, which indicates the lower accuracy of this model.  
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Fig.2) the parameter sensitivity plot for time, M/O ratio, and synthesis method (based 

on Table I) 

 
 

Based on Table II, the training time for the MLP neural network was longer than the other 

methods, but it yielded superior results. According to this table, the R2 value in the MLP method 

is 10.2% better than the RF method and 15.3% better than the DT method. Also, the PMSE and 

MAE values in the MLP method are 57.5 and 61.6 lower than the RF method, respectively. In 

short, although the DT model has higher simplicity and interpretability, the RF and MLP models 

show higher superiority for modeling in biodiesel production due to their greater accuracy and 

power in prediction. 

 

Fig. 3) the performance metrics of the three machine learning models on the test dataset 

 
 

Table II) summarizes the performance metrics of the three machine learning models on 

the test dataset 

Model R2 Score RMSE MAE Training Time (s) 

DT model 0.8500 8.9803 6.2197 0.8 
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RF model 0.8892 7.7154 6.1084 12.5 

MLP model 0.9800 3.2810 2.3463 45.2 

 

3.4) Feature Importance Analysis 

Fig. 4 shows the feature importance scores obtained from the different models and their 

normalized values. According to this figure, in the DT model, time has the highest importance 

and after that the M/O ratio is in the next stage and the synthesis method has a very low 

importance score. On the other hand, in the RF model, the importance score of the time effect 

has decreased compared to the DT model, but the importance score of the M/O effect has 

increased compared to the DT model and also the importance score of the synthesis method 

effect has become slightly higher. In the MLP model, the importance score of all features has 

been calculated to be approximately the same. Given that the accuracy of the MLP model is 

higher than other models, it can be stated that according to this figure, the effect of all 

parameters on biodiesel synthesis is almost uniform. This issue is in line with the principles of 

chemical kinetics, where longer reaction time usually provides the possibility of more complete 

conversion until reaching equilibrium, and where higher mixing leads to a higher rate of 

reaching equilibrium and higher biodiesel production. 

 

Fig. 4) the feature importance scores obtained from the different models and their 

normalized values 

 

3.5) Optimal Production Conditions  

Fig. 5 and 6 shows the three-dimensional response surface and contour plot for different 

production methods using the different models. According to these plots, the response surface 

exhibits a clear peak, indicating the optimal conditions for maximum conversion. The contour 

plot further illustrates the interaction between reaction time and methanol-to-oil ratio, 

demonstrating that optimal conversion occurs at intermediate values of both parameters. 
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Fig. 5) the three-dimensional response surface obtained from the different models for 

different production methods using the different models 

 
 

Fig. 6) the contour plot obtained from the different models for different production 

methods using the different models 

 
 

Fig. 7 shows the optimal biodiesel production conditions according to each model. The 

optimum points based on the three models are given in Table III. According to this Table, the 

UIMS method is the best production method and both the MLP and RF models indicate the best 

response time of approximately 47 minutes and the M/O ratio of approximately 1:5.6-5.8 for 

biodiesel production. This finding is in close agreement with the experimental results. These 
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optimal conditions represent a balance between sufficient reaction time for complete 

conversion. The methanol-to-oil ratio of approximately 5.6-5.8 is slightly higher than the 

stoichiometric ratio of 3:1, which is expected due to the reversible nature of the 

transesterification reaction (Yin et al., 2012). 

 

Fig. 7) the optimal biodiesel production conditions according to each model. 

 
 

Table III) The optimum production points based on the three models 

Model Best Method Time (min) M/O Ratio Predicted Conversion (%) 

Decision Tree UIMS 42.5 4.6 96.8 

Random Forest UIMS 47.5 5.6 93.4 

Neural Network UIMS 47.0 5.8 98.0 

 

4) Conclusion 

This study successfully demonstrated the application of machine learning algorithms for 

predicting and optimizing biodiesel production yield. According to the results, the MLP model 

demonstrated superior predictive performance, with an R² score of 0.9800, RMSE of 3.28, and 

MAE of 2.35, significantly outperforming RF (R² = 0.8892) and DT (R² = 0.8500). This 

superior performance can be attributed to the MLP's ability to capture complex nonlinear 

relationships in the biodiesel production process. 

Feature importance analysis revealed that, according to the MLP model, all parameters 

(reaction time, methanol-to-oil ratio, and synthesis method) have approximately equal 

importance. Based on the neural network model, the optimal synthesis conditions are: the UIMS 

method, a reaction time of 47 minutes, and a methanol-to-oil ratio of 5.8:1, which yields a 

predicted conversion of 98%. 

This research provides biodiesel plant managers with practical guidance. First, for best 

results use the UIMS method with 48.4 minutes reaction time and a 5.9:1 methanol-to-oil ratio. 

Second, implement neural networks for production forecasting while using Random Forest for 

daily process control. Third, focus your improvement efforts on reaction time management 

since it has the greatest impact at 43.8%. Finally, expect 15-20% yield improvement with cost 
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savings recovering your investment in 6-12 months through reduced methanol use and higher 

efficiency. 
 

References  

Arif, M., Alalawy, A. I., Zheng, Y., Koutb, M., Kareri, T., Salama, E.-S., & Li, X. (2025). 

Artificial intelligence and machine learning models application in biodiesel optimization 

process and fuel properties prediction. Sustainable Energy Technologies and Assessments, 

73, 104097. doi:https://doi.org/10.1016/j.seta.2024.104097 

Ayoola, A. A., Hymore, F. K., Omonhinmin, C. A., Olawole, O. C., Fayomi, O. S. I., 

Babatunde, D., & Fagbiele, O. (2019). Analysis of waste groundnut oil biodiesel 

production using response surface methodology and artificial neural network. Chemical 

Data Collections, 22, 100238. doi:https://doi.org/10.1016/j.cdc.2019.100238 

Chen, C., Liang, R., Xia, S., Hou, D., Abdoulaye, B., Tao, J., . . . Chen, G. (2023). Fast 

characterization of biodiesel via a combination of ATR-FTIR and machine learning 

models. Fuel, 332, 126177. doi:https://doi.org/10.1016/j.fuel.2022.126177 

Dobbelaere, M. R., Plehiers, P. P., Van de Vijver, R., Stevens, C. V., & Van Geem, K. M. 

(2021). Machine Learning in Chemical Engineering: Strengths, Weaknesses, 

Opportunities, and Threats. Engineering, 7(9), 1201-1211. 

doi:https://doi.org/10.1016/j.eng.2021.03.019 

Francisco Javier López-Flores, R. O.-B., Alma Yunuen Raya-Tapia, César Ramírez-Márquez, 

José Maria Ponce-Ortega. (2025). Machine Learning Tools for Chemical Engineering 

Methodologies and Applications: Elsevier Science. 

Gao, H., Zhu, L.-T., Luo, Z.-H., Fraga, M. A., & Hsing, I. M. (2022). Machine Learning and 

Data Science in Chemical Engineering. Industrial & Engineering Chemistry Research, 

61(24), 8357-8358. doi:10.1021/acs.iecr.2c01788 

Garg, A., & Jain, S. (2020). Process parameter optimization of biodiesel production from algal 

oil by response surface methodology and artificial neural networks. Fuel, 277, 118254. 

doi:https://doi.org/10.1016/j.fuel.2020.118254 

Gautam, S., Kanakraj, S., & Henry, A. (2022). Computational approach using machine learning 

modelling for optimization of transesterification process for linseed biodiesel production. 

AIMS Bioeng, 9(4), 319–336. doi:doi:10.3934/bioeng.2022023 

Ma, F., Clements, L. D., & Hanna, M. A. (1999). The effect of mixing on transesterification of 

beef tallow. Bioresource Technology, 69(3), 289-293. doi:https://doi.org/10.1016/S0960-

8524(98)00184-9 

Moayedi, H., Aghel, B., Foong, L. K., & Bui, D. T. (2020). Feature validity during machine 

learning paradigms for predicting biodiesel purity. Fuel, 262, 116498. 

doi:https://doi.org/10.1016/j.fuel.2019.116498 

Omojola Awogbemi, D. V. V. K. (2023). Application of machine learning technologies in 

biodiesel production process—A review. Frontiers in Energy Research, 11. 

doi:https://10.3389/fenrg.2023.1122638 

Pawar, C., Shreeprakash, B., Mokshanatha, B., Nikam, K. C., Motgi, N., Jathar, L. D., . . . 

Abbas, M. (2025). Machine Learning-Based Assessment of the Influence of Nanoparticles 

on Biodiesel Engine Performance and Emissions: A critical review. Archives of 

Computational Methods in Engineering, 32(1), 499-533. doi:10.1007/s11831-024-10144-

0 

Randell, J. M., Boon, L. M., Nguyen, H. H., Perez, J., Windham, C. D., & Cermak, D. M. 

(2025). Biodiesel Production, Analysis, and Combustion: An Across-the-Curriculum 

Laboratory. Journal of Chemical Education, 102(2), 765-775. 

doi:10.1021/acs.jchemed.4c00868 

https://doi.org/10.1016/j.seta.2024.104097
https://doi.org/10.1016/j.cdc.2019.100238
https://doi.org/10.1016/j.fuel.2022.126177
https://doi.org/10.1016/j.eng.2021.03.019
https://doi.org/10.1016/j.fuel.2020.118254
https://doi.org/10.1016/S0960-8524(98)00184-9
https://doi.org/10.1016/S0960-8524(98)00184-9
https://doi.org/10.1016/j.fuel.2019.116498
https://10.0.13.61/fenrg.2023.1122638


   

 
Comparative Analysis of Machine Learning Models for Predicting and Optimizing Biodiesel Production Yield … 

 

127 

Selvaraj, R., Moorthy, I. G., Kumar, R. V., & Sivasubramanian, V. (2019). Microwave 

mediated production of FAME from waste cooking oil: Modelling and optimization of 

process parameters by RSM and ANN approach. Fuel, 237, 40-49. 

doi:https://doi.org/10.1016/j.fuel.2018.09.147 

Sharma, P., Sahoo, B. B., Said, Z., Hadiyanto, H., Nguyen, X. P., Nižetić, S., . . . Li, C. (2023). 

Application of machine learning and Box-Behnken design in optimizing engine 

characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. 

International Journal of Hydrogen Energy, 48(18), 6738-6760. 

doi:https://doi.org/10.1016/j.ijhydene.2022.04.152 

Srivastava, G., Paul, A. K., & Goud, V. V. (2018). Optimization of non-catalytic 

transesterification of microalgae oil to biodiesel under supercritical methanol condition. 

Energy Conversion and Management, 156, 269-278. 

doi:https://doi.org/10.1016/j.enconman.2017.10.093 

Xing, Y., Zheng, Z., Sun, Y., & Agha Alikhani, M. (2021). A Review on Machine Learning 

Application in Biodiesel Production Studies. International Journal of Chemical 

Engineering, 2021(1), 2154258. doi:https://doi.org/10.1155/2021/2154258 

Yin, X., Ma, H., You, Q., Wang, Z., & Chang, J. (2012). Comparison of four different 

enhancing methods for preparing biodiesel through transesterification of sunflower oil. 

Applied Energy, 91(1), 320-325. doi:https://doi.org/10.1016/j.apenergy.2011.09.016 

 
 

.

https://doi.org/10.1016/j.fuel.2018.09.147
https://doi.org/10.1016/j.ijhydene.2022.04.152
https://doi.org/10.1016/j.enconman.2017.10.093
https://doi.org/10.1155/2021/2154258
https://doi.org/10.1016/j.apenergy.2011.09.016

