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ARTICLEINFO ABSTRACT

Keywords: This study compares three machine learning algorithms (Multilayer
Biodiesel Production Perceptron Neural Network (MLP), Random Forest (RF), and
Machine Learning, Neural Networks Decision Tree (DT)) for modeling biodiesel production. For this
Random Forest purpose the synthesis methods (UIMS, MS, FPUI, PUI), the
Decision Tree methanol to oil ratio (3:1 to 15:1) and reaction times (5-50 minutes),
Process Optimization were considered as input parameters and the percentage of biodiesel

production was considered as the output of the model. According to
the results, the MLP model demonstrated superior predictive
performance, with an R2 score of 0.9800, RMSE of 3.28, and MAE
of 2.35, significantly outperforming RF (R = 0.8892) and DT (R? =
0.8500). Also, the neural network model represents that all
parameters (reaction time, methanol to oil ratio, and synthesis
method) hold nearly equal importance. Based on the neural network
model, the optimal synthesis conditions are: the UIMS method, a
reaction time of 47 minutes, and a methanol-to-oil ratio of 5.8:1,
yielding a predicted conversion of 98%.

1. Introduction

today, the production of biodiesel as an alternative fuel, due to environmental concerns and the
energy supply crisis associated with fossil fuels, has been conducted by the various research
efforts. Biodiesel was produced through a series of esterification reactions in which vegetable
or animal oils (triglycerides) which is reacted with a short-chain alcohol (usually methanol) in
the presence of a catalyst, converting into methyl esters (biodiesel) and glycerol. The yield of
this process depends on numerous operational parameters, including the type of catalyst,
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temperature, reaction time, molar ratio of alcohol to oil, and mixing intensity (Ma, Clements,
& Hanna, 1999) (Randell et al., 2025; Yin, Ma, You, Wang, & Chang, 2012).

Among these factors, the methanol-to-oil ratio is a key economic parameter; insufficient
use of methanol leads to incomplete reaction yield, while excessive amounts are not only
economically inefficient but may also cause process-related issues such as emulsion formation
and difficulties in glycerol separation. Given the existence of complex nonlinear relationships
between these parameters caused traditional methods like Response Surface Methodology
(RSM) and Taguchi design often encounter difficulties in optimizing them. Recently, machine
Learning (ML) algorithms have attention in chemical engineering modeling of processes due
to their ability to handle complex, nonlinear relationships . Among various machine learning
techniques, Neural Networks (NN) and ensemble methods such as Random Forest (RF) have
shown particular promise in chemical engineering applications (Dobbelaere, Plehiers, Van de
Vijver, Stevens, & Van Geem, 2021; Francisco Javier Ldopez-Flores, 2025; Gao, Zhu, Luo,
Fraga, & Hsing, 2022).

In the field of production process optimization, several studies have used methods such as
RSM and artificial neural network (ANN). For example, Garg and Jain (Garg & Jain, 2020) in
algae oil conversion, Selvaraj et al. (Selvaraj, Moorthy, Kumar, & Sivasubramanian, 2019) in
waste cooking oil utilization, and Ayoola et al. (Ayoola et al., 2019) in waste peanut oil
conversion to biodiesel have used these methods and emphasized their accuracy and superiority.
In addition, genetic algorithm (GA) has also been used as an efficient optimization tool; as can
be seen in the research of Betico et al. (2015) on shea butter oil and Srivastava et al. (Srivastava,
Paul, & Goud, 2018) on microalgae oil. These studies report favorable results in parameter
prediction and adjustment and suggest the need for further studies in this field and also used a
combination of ANN and GA to model the biodiesel production process.

Another area where Al has found wide application is the evaluation and prediction of
biodiesel properties. For example, Sharma et al. (Sharma et al., 2023) used ANN to predict and
optimize the combustion and emission characteristics of biodiesel. Moayedi et al. (Moayedi,
Aghel, Foong, & Bui, 2020) evaluated the accuracy of various models such as Random Tree
and Multilayer Neural Network (MLPR) in estimating the purity of biodiesel. Also, Chen et al.
(Chen et al., 2023) used machine learning (ML) models for biodiesel characterization. Gautam
et al. (Gautam, Kanakraj, & Henry, 2022) also investigated the application of linear regression,
Multilayer Neural Network (MLP) and Nearest Neighbor (KNN) in optimizing the biodiesel
production process. Also, various studies have focused on optimizing biodiesel production
using ML algorithms which is concentrated on individual algorithms without a comprehensive
comparison of their strengths and limitations (Arif et al., 2025; Omojola Awogbemi, 2023;
Pawar et al., 2025; Xing, Zheng, Sun, & Agha Alikhani, 2021). However, comparative studies
which are evaluating the performance of multiple algorithms are limited.

Yin et al. (Yin et al., 2012) was reported the biodiesel production using four different
methods: mechanical stirring (MS), flat plate ultrasonic irradiation (FPUI), flat plate ultrasonic
irradiation with mechanical stirring (UIMS), and probe ultrasonic irradiation (PUI), and
recorded various experimental data. The data in this paper is suitable for a systematic
comparison of three machine learning algorithms, Decision Tree (DT), Random Forest (RF),
and MLP.

The aim of this study is a) It presents the first systematic comparison of three machine
learning algorithms (DT, RF, MLP) for biodiesel yield prediction, filling a significant research
gap; b) It develops a hybrid methodology that balances neural network accuracy (R? = 0.9800)
with Random Forest interpretability, providing both high predictions and process insights; c) It
delivers practical optimization guidelines and implementation strategies for industrial biodiesel
production, offering tangible value to chemical engineers and plant managers.
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2) Materials and Methods

2.1) Collection of Experimental Data

According to the Xiulian Yin et al. article (Yin et al., 2012), Table | shows the biodiesel
production percentage at different times, at a temperature of 50°C, with various methanol-to-
oil ratios, and for a batch reaction process under four different synthesis conditions. For each
method, seven methanol-to-oil (M/O) ratios were investigated: 3:1, 4:1, 5:1, 6:1, 7:1, 10:1, and
15:1. The reaction time varied from 5 to 50 minutes at 10-minute intervals, while temperature
conditions were kept constant. The biodiesel conversion percentage was measured as the output
variable. The four synthesis conditions studied in this research are as follows:

MS Method: Stirring was performed using a three-blade turbine electric stirrer with a
diameter of 1.5 cm and an operating speed of 500 rpm. The reactants were placed in a 500 ml
three-necked flask equipped with a reflux condenser, and the reaction temperature was
controlled at 50°C using a water bath.

FPUI Method: This method utilizes a flat-plate ultrasonic reactor (28 kHz, maximum power
600 W) placed inside a water tank. The reactants were added to a 500 ml three-necked flask
equipped with a reflux condenser. The flask was then placed on the flat-plate ultrasonic reactor,
and the tank was filled with water before the experiment. The ultrasonic irradiation frequency
and power were set to 28 kHz and 600 W, respectively.

UIMS Method: The equipment for this experiment was almost identical to the FPUI setup,
with the only difference being the addition of a stirrer, which was the same stirrer used in the
MS method. When the experiment started, the flat-plate ultrasonic device and the mechanical
stirrer operated simultaneously.

PUI Method: This experiment employed a probe-type ultrasonic reactor with a probe
approximately 22 mm in diameter and 100 mm in length. At the start of the experiment, the
reactants were pumped into the reactor, and the ultrasonic horn was immersed into the reaction
mixture. The ultrasonic irradiation frequency and power were set to 28 kHz and 600 W,
respectively.

Table 1) The biodiesel production percentage according to the article by Xiulian Yin et
al. (Yinetal., 2012)

Time Biodiesel Conversion (%)
Method (min) M/O=| M/O=| M/O= | M/O=| M/O=| M/IO= | M/O=
3 4 5 6 7 10 15
5 10 17 37 42 40 35 31
10 27 34 67 68 68 60 56
15 42 49 78 84 79 73 65
20 53 62 85 88 87 79 73
25 61 71 90 93 91 81 76
UIMS 30 66 76 91 94 93 85 80
35 70 82 92 95 94 88 84
40 76 85 93 97 95 92 86
45 77 87 95 98 96 93 88
50 79 89 95 98 97 94 90
5 7 12 20 26 28 30 28
MS 10 17 28 38 51 55 55 51
15 25 40 55 70 74 73 69
20 33 49 67 82 85 82 78
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Time Biodiesel Conversion (%)
Method (min) M/O=| M/O=| M/O=| M/O=| M/O=| M/IO= | M/O=

3 4 5 6 7 10 15

25 38 58 75 86 89 85 83

30 44 65 83 88 93 88 85

35 49 73 88 91 94 89 87

40 54 79 90 93 95 90 88

45 57 82 91 95 97 91 89

50 65 83 92 96 97 91 90

5 4 10 14 18 21 26 25

10 10 20 26 37 41 44 43

15 20 27 39 52 54 59 58

20 27 36 50 63 67 70 69

EPUI 25 34 44 60 75 75 81 78
30 40 52 70 84 84 85 82

35 44 60 77 86 87 88 86

40 48 66 85 88 89 92 89

45 52 73 88 91 94 93 91

50 59 77 90 92 95 94 92

5 12 24 35 42 43 37 34

10 30 40 66 70 70 64 59

15 43 56 81 84 77 73 67

20 55 70 85 89 88 79 74

PUI 25 64 78 90 93 91 81 78
30 72 84 91 94 93 87 83

35 75 86 93 95 94 89 84

40 79 89 95 96 95 92 86

45 81 90 96 97 96 95 89

50 82 91 97 98 97 95 90

2.2) Data Preprocessing

Based on the collected data (280 data points of biodiesel production percentage derived from 4
synthesis method levels, 7 methanol-to-oil ratio levels, and 10 reaction time levels), the
synthesis method was first encoded using one-hot encoding. Subsequently, the data was split
into training (224 samples) and testing (56 samples) set in an 80:20 ratio. Finally, Z-score
normalization was applied for training the neural network.

2.3) Machine Learning Algorithms

In this study three distinct machine learning algorithms: a Decision Tree (DT), a Random Forest
(RF), and a Multilayer Perceptron (MLP) neural network was utilized with their implementation
details.

A Decision Tree (DT) model was developed by using MATLAB's fitrtree function. To
ensure model generalizability, the tree depth was constrained to mitigate overfitting without
compromising predictive performance.

The Random Forest (RF) algorithm was implemented as an ensemble of 100 decision trees
by using MATLAB's TreeBagger function. The used configuration included a minimum leaf
size of 5, while the number of predictors to sample at each split was set to the square root of the
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total feature count. For internal error estimation, the out-of-bag predictions were utilized, and
for assessing feature significance, permutation importance was calculated.

A feedforward Multilayer Perceptron (MLP) neural network was architected for regression.
This consists of input layer of five neurons (matching the processed features), three hidden
layers with 64, 32, and 16 neurons respectively, and a single-neuron output layer. The Rectified
Linear Unit (ReLU) served as an activation function. The model was trained by using the
Levenberg-Marquardt backpropagation algorithm, with L2 regularization (A = 0.001) and a
dropout rate of 20% applied to the hidden layers to prevent overfitting.

2.4) Model Evaluation Metrics
To evaluate the models, three statistical metrics were used: the Coefficient of Determination

(R?) with formula (1), Root Mean Square Error (RMSE) with formula (2), and Mean Absolute
Error (MAE) with formula (3).

R2 — X —9)?

= 1
S0i-9)? @
1 n
RMSE = |~ (= 9,)? 0)
i=1
1 n
MAE = EZ'” - (3)
i=1

3) Result and discussion

3.1) Exploratory Data Analysis

Fig. 1 presents an exploratory analysis of the production dataset (based on Table I). The figure
shows that biodiesel conversion percentages cover a wide range, from 4% to 98%. Furthermore,
the conversion percentage for each production method exhibits an increasing trend over
time. Based on the box plot in Fig. 1, the UIMS method yields a higher biodiesel conversion
percentage than the other methods.

Analysis of the methanol-to-oil (M/O) ratio (Fig. 1) shows that as the ratio increases, the
conversion percentage first rises and then declines. In contrast, longer synthesis times are
consistently associated with increased biodiesel production. Furthermore, the different colored
points, representing different experimental methods, indicate that each method may exhibit
different behavior at various time points.

An examination of the correlation matrix between different variables in Fig.1 clearly shows
a positive correlation between time and conversion percentage, as well as between the M/O
ratio and conversion percentage. However, the correlation between the production methods and
other variables is low, suggesting that the experimental method has a lesser impact on the results
compared to other parameters. The 3D plot presented in Fig.1l illustrates the relationship
between time, M/O ratio, and conversion percentage. This plot demonstrates that as time and
M/QO ratio increase, the conversion percentage gradually increases.

Fig. 1): Exploratory analysis of the production dataset (based on Table I)
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3.2. Sensitivity Analysis

Fig. 2 shows the parameter sensitivity plot for time, M/O ratio, and synthesis method. By
averaging the biodiesel production yields and plotting them against synthesis time and different
M/O ratios, we have:

a) In all four methods, the average percentage of biodiesel production increases with time

b) In all four methods, the average percentage of biodiesel production increases with
increasing M/O ratio up to the range of 1:5 to 1:6 and then due to dilution of the reaction
mixture, the percentage of biodiesel production decreases. However, the UIMS method
produces more biodiesel than other methods at different M/O ratios and the FPUI method
produces the least biodiesel

c) According to the graph, the UIMS method has the highest biodiesel production followed
by the PUI, MS and FPUI methods in order from highest to lowest biodiesel production.

3.3. Model Performance Comparison

Fig. 3 shows a comparison chart of actual values versus predicted values for each model.
According to this figure, the MLP model has the highest R? score and the DT model has the
lowest R? value. So, the MLP model has a superior ability to explain the variance of the data,
and the DT model has great limitations in modeling complex relationships between input
parameters.

Regarding error metrics, the RF and MLP models exhibited the lowest RMSE and MAE
values, confirming their higher predictive accuracy and lower systematic error. The high error
values in the DT model can be due to the inability to generalize sufficiently between parameters.
Also, by considering the scatter plot of actual values versus predicted values for the RF and
MLP models in Fig. 3, which are compactly placed around the y=x line, it shows that there is a
close match between the actual and predicted values, but for the DT model, the scatter of points
is high, which indicates the lower accuracy of this model.
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Fig.2) the parameter sensitivity plot for time, M/O ratio, and synthesis method (based
on Table I)
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Based on Table I, the training time for the MLP neural network was longer than the other
methods, but it yielded superior results. According to this table, the R? value in the MLP method
IS 10.2% better than the RF method and 15.3% better than the DT method. Also, the PMSE and
MAE values in the MLP method are 57.5 and 61.6 lower than the RF method, respectively. In
short, although the DT model has higher simplicity and interpretability, the RF and MLP models
show higher superiority for modeling in biodiesel production due to their greater accuracy and
power in prediction.

Fig. 3) the performance metrics of the three machine learning models on the test dataset
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Table Il) summarizes the performance metrics of the three machine learning models on

the test dataset
Model R? Score | RMSE | MAE | Training Time (5s)
DT model 0.8500 | 8.9803 | 6.2197 0.8
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RF model 0.8892 | 7.7154 | 6.1084 12.5
MLP model | 0.9800 | 3.2810 | 2.3463 45.2

3.4) Feature Importance Analysis

Fig. 4 shows the feature importance scores obtained from the different models and their
normalized values. According to this figure, in the DT model, time has the highest importance
and after that the M/O ratio is in the next stage and the synthesis method has a very low
importance score. On the other hand, in the RF model, the importance score of the time effect
has decreased compared to the DT model, but the importance score of the M/O effect has
increased compared to the DT model and also the importance score of the synthesis method
effect has become slightly higher. In the MLP model, the importance score of all features has
been calculated to be approximately the same. Given that the accuracy of the MLP model is
higher than other models, it can be stated that according to this figure, the effect of all
parameters on biodiesel synthesis is almost uniform. This issue is in line with the principles of
chemical kinetics, where longer reaction time usually provides the possibility of more complete
conversion until reaching equilibrium, and where higher mixing leads to a higher rate of
reaching equilibrium and higher biodiesel production.

Fig. 4) the feature importance scores obtained from the different models and their
normalized values

Normalized Feature Importance

3.5) Optimal Production Conditions

Fig. 5 and 6 shows the three-dimensional response surface and contour plot for different
production methods using the different models. According to these plots, the response surface
exhibits a clear peak, indicating the optimal conditions for maximum conversion. The contour
plot further illustrates the interaction between reaction time and methanol-to-oil ratio,
demonstrating that optimal conversion occurs at intermediate values of both parameters.
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Fig. 5) the three-dimensional response surface obtained from the different models for
different production methods using the different models
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Fig. 6) the contour plot obtained from the different models for different production
methods using the different models
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Fig. 7 shows the optimal biodiesel production conditions according to each model. The
optimum points based on the three models are given in Table Ill. According to this Table, the
UIMS method is the best production method and both the MLP and RF models indicate the best
response time of approximately 47 minutes and the M/O ratio of approximately 1:5.6-5.8 for
biodiesel production. This finding is in close agreement with the experimental results. These



125

Comparative Analysis of Machine Learning Models for Predicting and Optimizing Biodiesel Production Yield ...

optimal conditions represent a balance between sufficient reaction time for complete
conversion. The methanol-to-oil ratio of approximately 5.6-5.8 is slightly higher than the
stoichiometric ratio of 3:1, which is expected due to the reversible nature of the
transesterification reaction (Yin et al., 2012).

Fig. 7) the optimal biodiesel production conditions according to each model.
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Table 111) The optimum production points based on the three models

Model Best Method | Time (min) | M/O Ratio | Predicted Conversion (%)
Decision Tree UIMS 42.5 4.6 96.8
Random Forest UIMS 47.5 5.6 934
Neural Network UIMS 47.0 5.8 98.0

4) Conclusion

This study successfully demonstrated the application of machine learning algorithms for
predicting and optimizing biodiesel production yield. According to the results, the MLP model
demonstrated superior predictive performance, with an R2 score of 0.9800, RMSE of 3.28, and
MAE of 2.35, significantly outperforming RF (R? = 0.8892) and DT (R% = 0.8500). This
superior performance can be attributed to the MLP's ability to capture complex nonlinear
relationships in the biodiesel production process.

Feature importance analysis revealed that, according to the MLP model, all parameters
(reaction time, methanol-to-oil ratio, and synthesis method) have approximately equal
importance. Based on the neural network model, the optimal synthesis conditions are: the UIMS
method, a reaction time of 47 minutes, and a methanol-to-oil ratio of 5.8:1, which yields a
predicted conversion of 98%.

This research provides biodiesel plant managers with practical guidance. First, for best
results use the UIMS method with 48.4 minutes reaction time and a 5.9:1 methanol-to-oil ratio.
Second, implement neural networks for production forecasting while using Random Forest for
daily process control. Third, focus your improvement efforts on reaction time management
since it has the greatest impact at 43.8%. Finally, expect 15-20% yield improvement with cost
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savings recovering your investment in 6-12 months through reduced methanol use and higher
efficiency.
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