Dua, D., & Graff, C. (2019). UCI machine learning repository [http://archive. ics. uci. edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. IEEE transactions on pattern analysis and machine intelligence, 1(1), 1-29.
Gicić, A., Đonko, D., & Subasi, A. (2023). Intelligent credit scoring using deep learning methods.
Concurrency and Computation: Practice and Experience, 35(9), e7637.
https://doi.org/10.1002/cpe.7637.
Golbayani, P., Florescu, I., & Chatterjee, R. (2020). A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees.
The North American Journal of Economics and Finance, 54, 101251.
https://doi.org/10.1016/j.najef.2020.101251.
Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection.
Expert Systems with Applications, 100, 234–245.
https://doi.org/10.1016/j.eswa.2018.01.037.
Mabu, S., Obayashi, M., & Kuremoto, T. (2015). Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems.
Applied Soft Computing, 36, 357–367.
https://doi.org/10.1016/j.asoc.2015.07.020
Moral-García, S., & Abellán, J. (2023). Improving the results in credit scoring by increasing diversity in ensembles of classifiers.
IEEE Access, 11, 58451–58461.
https://doi.org/10.1109/ACCESS.2023.3284137
Nazemi, A., Rezazadeh, H., Fabozzi, F. J., & Höchstötter, M. (2022). Deep learning for modeling the collection rate for third-party buyers. International Journal of Forecasting, 38(10), 240–252. https://doi.org/10.1016/j.ijforecast.2021.03.013.
Tsai, C. F., Sue, K. L., Hu, Y. H., & Chiu, A. (2021). Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction.
Journal of Business Research, 130(2), 200–209.
https://doi.org/10.1016/j.jbusres.2021.03.018
Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2020). Swarm intelligence based classification rule induction (CRI) framework for qualitative and quantitative approach: An application of bankruptcy prediction and credit risk analysis.
Journal of King Saud University-Computer and Information Sciences, 32(6), 647–657.
https://doi.org/10.1016/j.jksuci.2017.10.007.
Vrontos, S. D., Galakis, S., & Vrontos, I. D. (2021). Modeling and predicting US recessions using machine learning techniques.
International Journal of Forecasting, 37(2), 647–671.
https://doi.org/10.1016/j.ijforecast.2020.08.005.
Zhang, D., & Lou, S. (2021). The application research of neural network and BP algorithm in stock price pattern classification and prediction.
Future Generation Computer Systems, 115, 872–879.
https://doi.org/10.1016/j.future.2020.10.009.
Zhao, Z., Xu, S., Kang, B. H., Kabir, M. M. J., Liu, Y., & Wasinger, R. (2015). Investigation and improvement of multi-layer perceptron neural networks for credit scoring.
Expert Systems with Applications, 42(7), 3508–3516.
https://doi.org/10.1016/j.eswa.2014.12.006