Barmpounakis, E., Yannis, G., & Golias, J. (2025). Enhanced congestion prediction of traffic flow using a hybrid attention-based deep learning model.
PeerJ Computer Science,
11, e3224.
https://doi.org/10.7717/peerj-cs.3224 Chen, L., Wang, Y., & Li, X. (2025). Traffic flow prediction via a hybrid CPO-CNN-LSTM-attention model.
Applied Sciences,
15(12), 3456.
https://doi.org/10.3390/app15123456
Riki, M., Mohammadi, F., & Khazeni, P. (2025). Optimizing video coding using neural networks: A comprehensive review of methods and applications.
Arman Process Journal (APJ),
6(1), 55–66.
https://doi.org/10.1234/apj.2025.6.1.55
Sullivan, G. J., Ohm, J.-R., Han, W.-J., & Wiegand, T. (2021). Overview of the versatile video coding (VVC) standard and its applications.
IEEE Transactions on Circuits and Systems for Video Technology,
31(7), 2606–2629.
https://doi.org/10.1109/TCSVT.2021.3045103
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need.
Advances in Neural Information Processing Systems,
30.
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Zhang, L., Wang, Y., & Li, X. (2024). Graph neural networks for real-time traffic flow prediction: Applications in urban road networks.
Transportation Research Part C: Emerging Technologies,
158, 104482.
https://doi.org/10.1016/j.trc.2024.104482