Adams, J. S. (1965). Inequity in social exchange. In Advances in experimental social psychology (Vol. 2, pp. 267–299). Elsevier. https://doi.org/10.1016/S0065-2601(08)60108-2
Andersen, S. C., & Hjortskov, M. (2016). Cognitive biases in performance evaluations. Journal of Public Administration Research and Theory, 26(4), 647–662. https://doi.org/10.1093/jopart/muv036
Bankar, S., & Shukla, K. (2023). Performance management and artificial intelligence: A futuristic conceptual framework. In S. Grima, K. Sood, & E. Özen (Eds.), Contemporary studies of risks in emerging technology, part B (pp. 341–360). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80455-566-820231019
Basalamah, I., & Carda, P. M. (2025). AI-Driven performance management: Enhancing objectivity and efficiency. Journal of Economics and Management Scienties, 298–306. https://doi.org/10.37034/jems.v7i3.134
Beatrice, C., & Joanes, K. (2025). Performance management and artificial intelligence (AI): Enhancing personalized development with continuous feedback and data-driven decisions. Advance Online Publication. https://doi.org/10.5281/zenodo.15025954
Becker, B. (1998). High performance work systems and firm performance: A synthesis of research and managerial implications. Research in Personnel and Human Resources Management, 16, 53.
Becker, B. E., & Huselid, M. A. (1998). High performance work systems and firm performance: A synthesis of research and managerial implications. Research in Personnel and Human Resources Management, 16, 53–101. https://doi.org/10.1016/S0742-7301(99)16002-2
Berrah, L., Trentesaux, D., & Guerre-Chaley, F. (2024). Ethical issues in the use of generative artificial intelligence in performance management: Industrial case studies. Theodor Borangiu Damien Trentesaux Paulo Leitão, 29.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Calzada Prado, J., & Marzal, M. Á. (2013). Incorporating data literacy into information literacy programs: Core competencies and contents. Libri, 63(2). https://doi.org/10.1515/libri-2013-0010
Cappelli, P., Tambe, P., & Yakubovich, V. (2018). Artificial intelligence in human resources management: Challenges and a path forward. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3263878
Chamorro-Premuzic, T., Akhtar, R., Winsborough, D., & Sherman, R. A. (2017). The datafication of talent: How technology is advancing the science of human potential at work. Current Opinion in Behavioral Sciences, 18, 13–16. https://doi.org/10.1016/j.cobeha.2017.04.007
Chang, K. (2020). Artificial intelligence in personnel management: the development of APM model. The Bottom Line, 33(4), 377–388. https://doi.org/10.1108/BL-08-2020-0055
Chun, J. S., Cremer, D. de, Oh, E.‑J., & Kim, Y. (2024). What algorithmic evaluation fails to deliver: Respectful treatment and individualized consideration. Scientific Reports, 14(1), 25996. https://doi.org/10.1038/s41598-024-76320-1
Colquitt, J. A., Conlon, D. E., Wesson, M. J., Porter, C. O., & Ng, K. Y. (2001). Justice at the millennium: A meta-analytic review of 25 years of organizational justice research. The Journal of Applied Psychology, 86(3), 425–445. https://doi.org/10.1037/0021-9010.86.3.425
Copland, C. R. M., & Fowler, H. H. (1966). Communications from readers. California Management Review, 9(2), 96. https://doi.org/10.2307/41165729
Crook, B., Schlüter, M., & Speith, T. (2023, September). Revisiting the performance-explainability trade-off in explainable artificial intelligence (XAI). In 2023 IEEE 31st International Requirements Engineering Conference Workshops (REW) (pp. 316-324). IEEE. https://doi.org/10.48550/arXiv.2307.14239
DeNisi, A. S., & Murphy, K. R. (2017). Performance appraisal and performance management: 100 years of progress? The Journal of Applied Psychology, 102(3), 421–433. https://doi.org/10.1037/apl0000085
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. https://doi.org/10.48550/arXiv.1702.08608
Eppler, M. J., & Mengis, J. (2004). The concept of information overload: A review of literature from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, 20(5), 325–344. https://doi.org/10.1080/01972240490507974
Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. Machine Learning and the City: Applications in Architecture and Urban Design, 535-545. https://doi.org/10.1162/99608f92.8cd550d1
Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., & Ahmed, N. K. (2024). Bias and fairness in large language models: A survey. Computational Linguistics, 50(3), 1097–1179. https://doi.org/10.1162/coli_a_00524
Gallup. (2024). Employee Retention Depends on Getting Recognition Right.
Gallup, Inc. (2019). State of the American Workplace. Gallup Press. https://doi.org/10.26419/res.00017.001
Garcia-Arroyo, J., & Osca, A. (2021). Big data contributions to human resource management: A systematic review. The International Journal of Human Resource Management, 32(20), 4337–4362. https://doi.org/10.1080/09585192.2019.1674357
Govea, J., Gutierrez, R., & Villegas-Ch, W. (2024). Transparency and precision in the age of AI: Evaluation of explainability-enhanced recommendation systems. Frontiers in Artificial Intelligence, 7, 1410790. https://doi.org/10.3389/frai.2024.1410790
Greenberg, J. (1987). A taxonomy of organizational justice theories. Academy of Management Review, 12(1), 9–22. https://doi.org/10.5465/amr.1987.4306437
Greenberg, J. (1990). Organizational justice: Yesterday, today, and tomorrow. Journal of Management, 16(2), 399–432. https://doi.org/10.1177/014920639001600208
Hezam, Y., Luong, H., & Anthonysamy, L. (2025). Machine learning in predicting firm performance: A systematic review. China Accounting and Finance Review, 27(3), 309–339. https://doi.org/10.1108/CAFR-03-2024-0036
House, R. J. (1971). A path goal theory of leader effectiveness. Administrative Science Quarterly, 16(3), 321. https://doi.org/10.2307/2391905
Iqbal, M. Z., Akbar, S., & Budhwar, P. (2015). Effectiveness of performance appraisal: An integrated framework. International Journal of Management Reviews, 17(4), 510–533. https://doi.org/10.1111/ijmr.12050
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254–284. https://doi.org/10.1037/0033-2909.119.2.254
Lake, C. J., & Luong, A. (2016). How will getting rid of performance ratings affect managers? Industrial and Organizational Psychology, 9(2), 266–270. https://doi.org/10.1017/iop.2016.9
Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation. A 35-year odyssey. The American Psychologist, 57(9), 705–717. https://doi.org/10.1037/0003-066X.57.9.705
Mirishli, S. (2024). Ethical implications of AI in data collection: Balancing innovation with privacy. ANCIENT LAND, 6(8), 40–55. https://doi.org/10.36719/2706-6185/38/40-55
Mwita, K. M., & Kitole, F. A. (2025). Potential benefits and challenges of artificial intelligence in human resource management in public institutions. Discover Global Society, 3(1). 35. https://doi.org/10.1007/s44282-025-00175-8
Naveed, S., Stevens, G., & Robin-Kern, D. (2024). An overview of the empirical evaluation of explainable ai (XAI): A comprehensive guideline for user-centered evaluation in XAI. Applied Sciences, 14(23), 11288. https://doi.org/10.3390/app142311288