The Application of Artificial Intelligence in Human Resource Performance Appraisal: A Conceptual Framework for Responsible Implementation

Document Type : Review article

Author

Master's in Public Administration, Department of Public Administration, Faculty of Management and Economics, Tarbiat Modares University, Iran

10.22091/jdaid.2025.14114.1009

Abstract

This research investigates the fundamental challenges inherent in traditional performance appraisal systems, such as human cognitive biases and a lack of scalability, and analyzes the application of artificial intelligence (AI) as a solution to optimize these processes. The primary objective is to present a practical framework for the responsible implementation of AI, aimed at establishing more objective, equitable, and effective appraisal systems. This study employs an integrative review methodology (searching the Scopus database from 2019 onwards) combined with qualitative thematic analysis. Based on specific inclusion criteria (i.e., a focus on socio-technical challenges), 9 specialized articles were selected for final analysis. The analysis of this corpus achieved thematic saturation. The thematic analysis led to the identification of four primary themes: (1) limitations of traditional systems; (2) key AI-driven opportunities, such as enhanced objectivity and continuous feedback; (3) critical risks (e.g., Algorithmic Bias and the Black Box Problem); and (4) implementation imperatives (e.g., the necessity of Human-in-the-Loop (HITL) Oversight and transparency). Ultimately, the study concludes that success is contingent upon human-machine synergy and proposes a three-stage Integrated Socio-Technical Systems (ISTS) Framework. This framework emphasizes Explainable AI (XAI) (XAI) and the preservation of human judgment. This study is conceptual in nature. The proposed framework offers a pathway for the sustainable and human-centric utilization of this technology, which necessitates empirical validation in future research.

Keywords

Main Subjects


Adams, J. S. (1965). Inequity in social exchange. In Advances in experimental social psychology (Vol. 2, pp. 267–299). Elsevier. https://doi.org/10.1016/S0065-2601(08)60108-2
Andersen, S. C., & Hjortskov, M. (2016). Cognitive biases in performance evaluations.  Journal of Public Administration Research and Theory, 26(4), 647–662. https://doi.org/10.1093/jopart/muv036
Bankar, S., & Shukla, K. (2023). Performance management and artificial intelligence: A futuristic conceptual framework. In S. Grima, K. Sood, & E. Özen (Eds.),  Contemporary studies of risks in emerging technology, part B (pp. 341–360). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80455-566-820231019
Basalamah, I., & Carda, P. M. (2025). AI-Driven performance management: Enhancing objectivity and efficiency. Journal of Economics and Management Scienties, 298–306. https://doi.org/10.37034/jems.v7i3.134
Beatrice, C., & Joanes, K. (2025). Performance management and artificial intelligence (AI): Enhancing personalized development with continuous feedback and data-driven decisions. Advance Online Publication. https://doi.org/10.5281/zenodo.15025954
Becker, B. (1998). High performance work systems and firm performance: A synthesis of research and managerial implications. Research in Personnel and Human Resources Management, 16, 53.
Becker, B. E., & Huselid, M. A. (1998). High performance work systems and firm performance: A synthesis of research and managerial implications. Research in Personnel and Human Resources Management, 16, 53–101. https://doi.org/10.1016/S0742-7301(99)16002-2
Berrah, L., Trentesaux, D., & Guerre-Chaley, F. (2024). Ethical issues in the use of generative artificial intelligence in performance management: Industrial case studies. Theodor Borangiu Damien Trentesaux Paulo Leitão, 29.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Calzada Prado, J., & Marzal, M. Á. (2013). Incorporating data literacy into information literacy programs: Core competencies and contents. Libri, 63(2). https://doi.org/10.1515/libri-2013-0010
Cappelli, P., Tambe, P., & Yakubovich, V. (2018). Artificial intelligence in human resources management: Challenges and a path forward. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3263878
Chamorro-Premuzic, T., Akhtar, R., Winsborough, D., & Sherman, R. A. (2017). The datafication of talent: How technology is advancing the science of human potential at work. Current Opinion in Behavioral Sciences, 18, 13–16. https://doi.org/10.1016/j.cobeha.2017.04.007
Chang, K. (2020). Artificial intelligence in personnel management: the development of APM model. The Bottom Line, 33(4), 377–388. https://doi.org/10.1108/BL-08-2020-0055
Chun, J. S., Cremer, D. de, Oh, E.‑J., & Kim, Y. (2024). What algorithmic evaluation fails to deliver: Respectful treatment and individualized consideration. Scientific Reports, 14(1), 25996. https://doi.org/10.1038/s41598-024-76320-1
Colquitt, J. A., Conlon, D. E., Wesson, M. J., Porter, C. O., & Ng, K. Y. (2001). Justice at the millennium: A meta-analytic review of 25 years of organizational justice research. The Journal of Applied Psychology, 86(3), 425–445. https://doi.org/10.1037/0021-9010.86.3.425
Copland, C. R. M., & Fowler, H. H. (1966). Communications from readers. California Management Review, 9(2), 96. https://doi.org/10.2307/41165729
Crook, B., Schlüter, M., & Speith, T. (2023, September). Revisiting the performance-explainability trade-off in explainable artificial intelligence (XAI). In 2023 IEEE 31st International Requirements Engineering Conference Workshops (REW) (pp. 316-324). IEEE. https://doi.org/10.48550/arXiv.2307.14239
DeNisi, A. S., & Murphy, K. R. (2017). Performance appraisal and performance management: 100 years of progress? The Journal of Applied Psychology, 102(3), 421–433. https://doi.org/10.1037/apl0000085
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. https://doi.org/10.48550/arXiv.1702.08608
Eppler, M. J., & Mengis, J. (2004). The concept of information overload: A review of literature from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, 20(5), 325–344. https://doi.org/10.1080/01972240490507974
Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. Machine Learning and the City: Applications in Architecture and Urban Design, 535-545. https://doi.org/10.1162/99608f92.8cd550d1
Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., & Ahmed, N. K. (2024). Bias and fairness in large language models: A survey.  Computational Linguistics, 50(3), 1097–1179. https://doi.org/10.1162/coli_a_00524
Gallup. (2024). Employee Retention Depends on Getting Recognition Right.
Gallup, Inc. (2019). State of the American Workplace. Gallup Press. https://doi.org/10.26419/res.00017.001
Garcia-Arroyo, J., & Osca, A. (2021). Big data contributions to human resource management: A systematic review. The International Journal of Human Resource Management, 32(20), 4337–4362. https://doi.org/10.1080/09585192.2019.1674357
Govea, J., Gutierrez, R., & Villegas-Ch, W. (2024). Transparency and precision in the age of AI: Evaluation of explainability-enhanced recommendation systems. Frontiers in Artificial Intelligence, 7, 1410790. https://doi.org/10.3389/frai.2024.1410790
Greenberg, J. (1987). A taxonomy of organizational justice theories. Academy of Management Review, 12(1), 9–22. https://doi.org/10.5465/amr.1987.4306437
Greenberg, J. (1990). Organizational justice: Yesterday, today, and tomorrow.  Journal of Management, 16(2), 399–432. https://doi.org/10.1177/014920639001600208
Hezam, Y., Luong, H., & Anthonysamy, L. (2025). Machine learning in predicting firm performance: A systematic review.  China Accounting and Finance Review, 27(3), 309–339. https://doi.org/10.1108/CAFR-03-2024-0036
House, R. J. (1971). A path goal theory of leader effectiveness. Administrative Science Quarterly, 16(3), 321. https://doi.org/10.2307/2391905
Iqbal, M. Z., Akbar, S., & Budhwar, P. (2015). Effectiveness of performance appraisal: An integrated framework. International Journal of Management Reviews, 17(4), 510–533. https://doi.org/10.1111/ijmr.12050
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254–284. https://doi.org/10.1037/0033-2909.119.2.254
Lake, C. J., & Luong, A. (2016). How will getting rid of performance ratings affect managers? Industrial and Organizational Psychology, 9(2), 266–270. https://doi.org/10.1017/iop.2016.9
Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation. A 35-year odyssey. The American Psychologist, 57(9), 705–717. https://doi.org/10.1037/0003-066X.57.9.705
Mirishli, S. (2024). Ethical implications of AI in data collection: Balancing innovation with privacy. ANCIENT LAND, 6(8), 40–55. https://doi.org/10.36719/2706-6185/38/40-55
Mwita, K. M., & Kitole, F. A. (2025). Potential benefits and challenges of artificial intelligence in human resource management in public institutions. Discover Global Society, 3(1). 35. https://doi.org/10.1007/s44282-025-00175-8
Naveed, S., Stevens, G., & Robin-Kern, D. (2024). An overview of the empirical evaluation of explainable ai (XAI): A comprehensive guideline for user-centered evaluation in XAI.  Applied Sciences, 14(23), 11288. https://doi.org/10.3390/app142311288